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ABSTRACT
We present a generalized formalism for treating the porosity-associated reduction in continuum
opacity that occurs when individual clumps in a stochastic medium become optically thick. As
in previous work, we concentrate on developing bridging laws between the limits of optically
thin and thick clumps. We consider geometries resulting in either isotropic or anisotropic
effective opacity, and, in addition to an idealized model in which all clumps have the same
local overdensity and scale, we also treat an ensemble of clumps with optical depths set
by Markovian statistics. This formalism is then applied to the specific case of bound–free
absorption of X-rays in hot star winds, a process not directly affected by clumping in the
optically thin limit. We find that the Markov model gives surprisingly similar results to
those found previously for the single-clump model, suggesting that porous opacity is not very
sensitive to details of the assumed clump distribution function. Further, an anisotropic effective
opacity favours escape of X-rays emitted in the tangential direction (the ‘venetian blind’ effect),
resulting in a ‘bump’ of higher flux close to line centre as compared to profiles computed from
isotropic porosity models. We demonstrate how this characteristic line shape may be used to
diagnose the clump geometry, and we confirm previous results that for optically thick clumping
to significantly influence X-ray line profiles, very large porosity lengths, defined as the mean
free path between clumps, are required. Moreover, we present the first X-ray line profiles
computed directly from line-driven instability simulations using a 3D patch method, and find
that porosity effects from such models also are very small. This further supports the view that
porosity has, at most, a marginal effect on X-ray line diagnostics in O stars, and therefore that
these diagnostics do indeed provide a good ‘clumping insensitive’ method for deriving O star
mass-loss rates.

Key words: line: profiles – radiative transfer – stars: early-type – stars: mass-loss – stars:
winds, outflows – X-rays: stars.

1 IN T RO D U C T I O N

Over the past years, it has become clear that in principle all stan-
dard spectral mass-loss diagnostics of O stars are affected by wind
clumping, i.e. by the small-scale wind inhomogeneities that should
arise naturally from a strong, intrinsic instability associated with
the radiative line-driving of these winds [the line-driven instability
(LDI); e.g. Owocki, Castor & Rybicki 1988]. If neglected, such
wind clumping causes standard diagnostics such as Hα and in-

�E-mail: jon@bartol.udel.edu

frared/radio free–free emission, which have opacities that depend
on the local wind density squared, to overestimate mass-loss rates
(for summaries, see Hamann, Feldmeier & Oskinova 2008; Puls,
Vink & Najarro 2008).1 The analysis here examines the degree to

1 Diagnostic ultraviolet resonance lines, which have opacities that depend
linearly on density, are directly affected by clumping only if individual
clumps are optically thick. However, recent results indicate that clumps are
indeed thick in these lines (Prinja & Massa 2010), which then can lead to
reduced line strengths and underestimates of mass-loss rates if neglected in
the analysis (Oskinova, Hamann & Feldmeier 2007; Sundqvist et al. 2011).
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which X-ray line profiles can provide a mass-loss diagnostic that is
relatively insensitive to clumping.

In single O stars without strong magnetic fields, X-rays are be-
lieved to originate in embedded wind shocks associated with the
LDI (Feldmeier, Puls & Pauldrach 1997), and the broad emission
lines revealed by high-resolution X-ray spectroscopy support this
basic scenario (Cassinelli et al. 2001; Kahn et al. 2001; Cohen et al.
2006). These X-ray lines are often observed as blueshifted and
asymmetric, characteristics stemming from attenuation by bound–
free absorption in the bulk wind (MacFarlane et al. 1991). As seen
by an observer, X-ray photons emitted in the receding part of the
wind travel farther before escape, and thus undergo more absorp-
tion, than those emitted in the advancing part.

For optically thin clumps, the amount of bound–free absorption is
proportional to the local density, and may thereby be used to put ad-
ditional constraints on mass-loss rates. Whilst initial analyses (e.g.
Kramer, Cohen & Owocki 2003) required very low mass-loss rates
to reproduce the observed X-ray lines, more recent investigations
with a better account of the wind opacity and line blends (Cohen
et al. 2010, 2011a; Cohen, Wollman & Leutenegger 2011b) show
that rates inferred from X-ray lines are consistent with those derived
from other diagnostics, if clumping is adequately accounted for in
the other diagnostics. However, a possible shortcoming of these
X-ray analyses is the assumption that clumps are optically thin,
which if not met would lead to an overestimate of the wind opacity,
due to the principal effect of porosity.

Wind porosity models aiming to calculate X-ray line profiles
have been developed by, e.g., Feldmeier, Oskinova & Hamann
(2003), Oskinova, Feldmeier & Hamann (2004) and Owocki &
Cohen (2006, hereafter OC06). The first two of these studies as-
sumed the clumps to be radially oriented, geometrically thin shell
fragments (‘pancakes’), leading to a distinct anisotropic form of the
effective opacity. In OC06, on the other hand, the clumps were as-
sumed isotropic to impinging radiation. Whereas geometrically thin
shell structures are indeed seen in 1D LDI simulations, first attempts
to construct 2D LDI models suggest that these shells break up via
Rayleigh–Taylor or thin shell instabilities into small clumps of sim-
ilar angular and radial scales (Dessart & Owocki 2003, 2005a). But
these initial 2D simulations do not yet properly treat the lateral ra-
diation transport that might couple material, and so the degree of
anisotropy of instability-generated structure in a fully consistent 3D
model is still uncertain.

From the diagnostic side, OCO6 (see also Cohen, Leutenegger &
Townsend 2008) argued that for porosity to significantly affect the
X-ray line formation, unrealistically large porosity lengths, defined
as the mean free path between clumps (see Section 3), must be
invoked. This view is also supported by the above-noted recent
attempts to derive mass-loss rates directly from X-ray diagnostics.
On the other hand, Oskinova, Feldmeier & Hamann (2006) have
argued that anisotropic clumps enhance porosity effects, and lead
to more symmetric line profiles than if assuming isotropic clumps,
in general agreement with X-ray observations.

This paper and its sequel (Leutenegger et al., in preparation, here-
after Paper II) further examine these issues. Building upon previous
works by Owocki & Cohen (2001) and OC06, Sections 2 and 3 de-
velop a generalized formalism for synthesizing X-ray lines, includ-
ing porosity as caused by either isotropic (spherical, or randomly
oriented) or anisotropic (flattened, radially oriented) clumps. In ad-
dition, we generalize our models to treat an ensemble of clumps of
some distribution in optical depth, rather than retaining the assump-
tion that all clumps are locally identical. Section 4 then systemati-
cally examines synthetic X-ray line profiles and analyses porosity

effects for isotropic and anisotropic clumps, as well as for uniform
and exponential clump distributions. We discuss how the shape
of the clumps affects the line profiles in cases where porosity is
important, and how this may be used to put empirical constraints
on the wind’s clump geometry (leaving detailed confrontation with
observed spectra to Paper II). Section 5 presents first X-ray line pro-
files calculated directly from LDI simulations, using the 3D patch
method first developed by Dessart & Owocki (2002). Section 6
gives a physical interpretation of the analytic porosity models pre-
sented, showing they can be reconciled with a general statistical
model derived for stochastic transport in a two-component Marko-
vian mixture of immiscible fluids. Finally, in Section 7 we discuss
our results, compare them to other studies and give our conclusions.

2 O PACI TI ES I N A C LUMPED HOT STA R
W I N D

In our phenomenological model, we assume that the opacities in
the bulk wind can be described using a two-component medium
consisting of overdense ‘clumps’ (denoted with cl) and a rarefied
‘interclump medium’. The distribution of X-ray emitters in the
shock-heated wind is described in Section 3.4. We neglect the inter-
clump medium’s contribution to the opacities, an assumption well
justified for absorption of X-rays in O star winds, due to the gen-
erally low X-ray optical depths found for such stars (Cohen et al.
2010, 2011a). The volume filling fraction of the dense gas is f V,
thus the local mean density is 〈ρ〉 = f Vρcl, where the angle brackets
denote spatial averaging.

2.1 Optically thin clumps

X-rays emitted in the wind are attenuated by bound–free absorp-
tion depending linearly on density. The local atomic mean volume
opacity per unit length is then 〈χ〉 = κ〈ρ〉, with mass absorption co-
efficient κ . By requiring that the mean density of the clumped wind
be equal to the density of a corresponding smooth wind model, i.e.
that 〈ρ〉 = ρsm, one immediately recognizes the well-known result
that for atomic processes depending linearly on density, the opaci-
ties are not directly affected by clumping as long as the individual
clumps remain optically thin. However, also linear-density opacities
can via a modified wind ionization balance be indirectly affected by
optically thin clumping, but modelling such ionization equilibria is
not a focus of the present paper.

As a comparison, for processes depending on the square of the
density (e.g. Hα in hot star winds), the opacities are always en-
hanced compared to smooth models, by a factor given by the so-
called clumping factor fcl ≡ 〈ρ2〉/〈ρ〉2 = f −1

V , where the latter
equality holds when the interclump medium is neglected, whereby
one obtains2 〈χ〉 ∝ 〈ρ2〉 = fcl〈ρ〉2 = f −1

V ρ2
sm.

2.2 Porosity

It is important to realize that 〈χ〉 may be accurately used in radiative
transfer models only in the limit of optically thin clumps, τ cl � 1. If
this condition is not satisfied for the investigated process, the radia-
tive transfer becomes more complex. For continuum processes such

2 In this context, we note that the porosity formalism presented in Section 3,
although developed there for the specific case of X-ray line attenuation, is
applicable also for continuum processes depending on 〈ρ2〉, for example
thermal free–free emission, simply by exchanging the expression for 〈χ〉.
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as the attenuation of X-rays considered here, optically thick clumps
lead to a local self-shielding of opacity within the clumps, which in
turn allows for increased escape of radiation through porous chan-
nels in between the clumps.3 The essential effect of such porosity is
that the ‘effective’ opacity of the medium becomes lower than pre-
dicted by an optically thin clump model. Thus, porosity can mimic
the symmetrizing effects of reduced mass loss on the X-ray line
profiles. The purpose of this paper is to present a formalism for
quantifying this reduction and to show how clump geometry and
distribution affect X-ray line profile morphology in the presence of
porosity.

3 A PORO SITY FORMALISM FOR EFFECTI VE
O PAC I T Y

In analogy with the atomic opacity, we may write the effective
opacity per unit length of a clump ensemble as (e.g. Feldmeier et al.
2003)

χeff = nclAclP , (1)

where ncl is the number density of clumps, Acl is the projected area
(the geometric cross-section) of a clump for direction n, and P is
the probability that a photon impacting a clump gets absorbed. This
probability obviously depends on the clump optical depth, P =
P(τ cl), which we here characterize by the average over all possible
chord lengths � through the clump for rays of direction n:

τcl =
∫

τ� dAcl

Acl
=

∫ ∫
κρcl d� dAcl

Acl
= κMcl

Acl
, (2)

where Mcl is the mass of the clump and the last equality assumes
that κ is constant over the clump.

Another useful quantity is the local mean free path between
clumps, also known as the porosity length h (Owocki, Gayley &
Shaviv 2004):

h ≡ 1

nclAcl
. (3)

Using this definition, τ cl may be written as

τcl = κMcl

Acl
= κ(nclMcl)h = κ〈ρ〉h = 〈χ〉h, (4)

whereby

χeff = P (τcl)

h
⇒ χeff

〈χ〉 = P (τcl)

τcl
. (5)

For P = 1, equation (5) returns the atomic opacity independent
result χ eff = 1/h, demonstrating how the porosity length h can
also be interpreted as a photon’s mean free path in the limit of
only optically thick clumps. Further, for a constant clump density,
equation (2) yields τ cl = κρcl�av, with average chord length �av,
which then recovers the commonly used form h = �av/f V for the
porosity length.

3 For line formation in a rapidly accelerating clumped medium, optically
thick clumps lead to corresponding velocity gaps, through which line pho-
tons may escape without ever interacting with the material (Owocki 2008;
Sundqvist, Puls & Feldmeier 2010). This is a consequence of the Doppler
shift, leading to a picture wherein the clump length-scales can be compara-
ble to (or even larger than) the extent of the lines’ resonance zones, which
is a limit wherein the porosity formalism developed here is not directly
applicable.

3.1 Isotropy versus anisotropy

Note that the porosity length as defined in equation (3) is a
strictly local quantity. And because τ cl = 〈χ〉h, this means that
the (an)isotropy of the effective opacity (equation 5) depends only
on Acl, and is independent of the spatial variation of h associated
with the global wind expansion. Thus, spherical clumps (Fig. 1), as
well as randomly oriented clumps of arbitrary shape, will have an
isotropic effective opacity. For these cases then, assuming spherical
symmetry for the global wind expansion, one may set h = h(r) for
all directions n impacting the clump.

However, now let us consider a specific wind model in which
the clumps really are randomly distributed, but radially oriented,
geometrically thin shell fragments (‘pancakes’) (Feldmeier et al.
2003; Oskinova et al. 2004). In such a model, the projected clump
area is Acln · r/|r| = Aμ=1|μ|, where we here identify the projected
area for a radially directed ray with the area for an isotropic clump
(Fig. 1).

This implies the effective opacity retains its basic form (equa-
tion 5) also for such anisotropic clumps, but the clump optical
depth becomes larger for oblique rays:

τcl(r, μ) = 〈χ〉h(r, μ) = 〈χ〉h(r)/|μ|, (6)

where the isotropic case is recovered by setting μ = 1, and the ra-
dial dependencies of the mean opacity and directional cosine have
been suppressed. This paper considers only isotropic and ‘pancake’
geometries, but the porosity formalism outlined above applies gen-
erally to any clump geometry described by Acl = f (n), where f is
some function.

To illustrate such isotropic versus anisotropic absorbing media,
Fig. 2 compares a random distribution of spherical clumps and ra-
dially oriented pancakes, as illuminated by a uniform background
source (see Appendix A). Note that for visual clarity, we extend
these visualizations only to an outer radius 5R∗. We stress that
Fig. 2 is for general illustration purposes; the uniform background
illumination is not a distribution of X-ray emitters. Also, we re-
peat that though assumed in the visualizations, spherical clumps
are actually not a necessity for obtaining isotropic porosity; the re-
quirement for this is rather that the clumps be randomly oriented
(see above).

Figure 1. Schematic of photon of direction n impacting a spherical clump
and a radially oriented (r/|r|) shell fragment. The former gives an isotropic
effective opacity, whereas the latter gives an anisotropic effective opacity,
since the projected surface area depends on direction cosine μ ≡ cos θ =
n · r/|r|.
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Figure 2. Back-lit rendition of randomly generated spherical (upper row) and radially compressed (lower row) clumps in a spherically expanding structured
wind (columns 2–7), compared to a back-lit smooth wind (column 1) with τ� = 1 and the same total mass between an onset radius 1.05R� and a maximum
visualization radius 5R�. The terminal porosity length h∞/R� increases from left to right, as given by the left header, but clump diameters all scale as
dcl = (0.2/

√
π)r . The right header gives the total number of clumps. The white circle represents the star, which also radiates with the same surface brightness

as the background source. Appendix A gives details on how these visualizations were generated.

3.2 Bridging laws for the effective opacity

For attenuation with a given local clump optical depth τ cl = τ 0,
let us assume that the probability of absorption simply takes the
basic form P = 1 − e−τ0 . While formally exact only in cases where
all chord lengths across the clump are equal, this expression is a
suitable approximation that yields with equation (5):

χeff

〈χ〉 = 1 − e−τ0

τ0
. (7)

This ‘single-clump’ bridging law now has the correct values in
the limiting cases; it returns the atomic mean opacity when τ 0 �
1 and is independent of it when τ 0 � 1. And as discussed in
the preceding section, the bridging law equation applies for both
isotropic and anisotropic effective opacity models, however with
different expressions for the clump optical depth.

Assuming the effective mean free path scales as χ−1
eff = 〈χ〉−1+h,

an even simpler ‘inverse’ (or ‘Rosseland’; see OC06) bridging law
was invoked in OC06:
χeff

〈χ〉 = 1

1 + τ0
, (8)

which also has the correct optically thin and thick limits. By consid-
ering the direction-dependent mean free path, this inverse bridging
law can be realized also for anisotropic models.

In OC06, the practical motivation for invoking equation (8) was
because the optical depth integral for X-ray attenuation could then
be solved analytically. However, Section 6 shows it also happens
to represent the bridging law that follows from assuming that the
local clump optical depth distribution function obeys Markovian
statistics. Thus, the single-clump and inverse bridging laws (equa-
tions 7 and 8) differ in that the former assumes all clumps have the
same local optical depth (for a given direction), whereas the latter
averages over an exponential distribution in τ cl.

3.3 Velocity stretch porosity

OC06 assumed that the porosity length scales with the local radius,
but for mass-conserving clumps such a scaling is only appropriate
for isotropic expansion. For clumps released into a radially expand-
ing stellar wind, the wind acceleration will ‘stretch’ the clump spac-
ing in proportion to the wind velocity (Feldmeier et al. 2003). The

analysis here assumes this velocity stretch form for both isotropic
and anisotropic porosity.

This distinction is most easily seen for the radially fragmented
shell model, in which the average radial separation between two
shells is 
r = h(r). For shells moving radially according to a ‘β-
velocity law’, w(r) = v(r)/v∞ = (1 − R�/r)β , where R� is the stellar
radius, the separation is h(r) = h∞w(r), with the parameter h∞
representing the asymptotic radial separation as w → 1. For sim-
plicity, this paper assumes the prototypical value β = 1. The quantity
h∞/v∞ represents the average time between two consecutive shell
passings at a fixed radial point in the wind (Sundqvist et al. 2010),
which may also be interpreted as the inverse of a ‘fragmentation
frequency’ n0 (Oskinova et al. 2004, 2006). For example, h∞ = R�

gives a fragmentation frequency n0 = v∞/R� that is equal to the
inverse of the wind flow time.

3.4 X-ray line transfer in porosity models

To compute X-ray emission line profiles, we solve the standard
formal integral of radiative transfer, using a customary (p, z) co-
ordinate system and following the basic procedure described in
Owocki & Cohen (2001) for the distribution of X-ray emitters.
Since our primary interest here is the shapes of the lines, all re-
sulting flux profiles have been normalized to a unit maximum,
Fnorm

x = Fx/Max(Fx). For simplicity, we assume that the X-ray
emission begins at a certain onset radius R0 = 1.5R�, and is con-
stant beyond it. This onset radius is consistent with that typically
predicted by conservative, self-excited LDI simulations (Runacres
& Owocki 2002), and both R0 ≈ 1.5R� and a constant X-ray filling
factor are supported by observations (Cohen et al. 2006, 2011a;
Leutenegger et al. 2006). Moreover, both LDI simulations and the
observed X-ray luminosities indicate that only a very small mass
fraction, less than 1 per cent, of the stellar wind is shock heated
to X-ray-emitting temperatures at any given time. Simulations and
observed lack of X-ray variability further indicate that there are
numerous sites of X-ray emission distributed throughout the wind,
justifying our assumption of a smoothly distributed X-ray-emitting
plasma above the onset radius. Note, though, that R0 does not neces-
sarily equal the clump onset radius Rcl, which observations typically
indicate is located much closer to the photosphere (Puls et al. 2006;
Cohen et al. 2011a; see also Fig. 2 for a visualization). But in
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Figure 3. Synthetic X-ray line profiles for the ‘single clump’, χeff /〈χ〉 = (1 − e−τ )/τ , and the ‘inverse’, χ eff /〈χ〉 = 1/(1 + τ ), effective opacity bridging laws
and for different porosity length parameters, h∞/R�, as labelled. All models assume an onset radius for the X-ray emission R0 = 1.5R�. The abscissae display
the dimensionless wavelength x = (λ/λ0 − 1)c/v∞, with λ0 the line-centre wavelength, and the ordinates display the normalized flux. Black, red, blue and
green dashed lines have an optical depth parameter τ � = 0.01, 1, 5 and 10, respectively; for a non-colour separation, an increased τ� means a more blueshifted
peak flux. Note that we have set h∞ = 0 (the uppermost panel) to be equivalent to assuming only optically thin clumps.

the velocity stretch porosity models, we have verified that the ex-
act value of this Rcl is not important for the resulting X-ray line
profiles.

The absorption of X-rays emitted at position ze along a ray with
impact parameter p is given by the optical depth integral:

τ (p, ze) =
∫ ∞

ze

χeff (z, p) dz, (9)

where the effective opacity accounts for any porosity. The opac-
ity in a smooth or optically thin clump model, due purely to the
atomic mean opacity 〈χ〉, is proportional to the mass-loss rate
Ṁ of the star and here characterized by a fiducial optical depth
τ� = Ṁκ/(4πR�v∞), with wind terminal speed v∞. To evaluate
equation (9) for our porosity models, the only additional input
parameter required is the porosity length h (see equations 4–8).
This holds for isotropic as well as anisotropic effective opacity

models, and for the single-clump as well as the inverse bridging
laws.4

4 X -RAY LI NE PROFI LES FROM ANALYTIC
PORO SI TY MODELS

Fig. 3 displays synthetic X-ray line profiles calculated using the
four possible combinations of isotropic versus anisotropic effec-
tive opacity and single-clump versus inverse bridging laws. The
figure clearly shows that profiles calculated using the two different
bridging laws are very similar (see also Fig. 5, as well as fig. 1

4 Source codes to all X-ray line porosity models presented in this sec-
tion are publicly available at (package WINDPROF) http://heasarc.gsfc.
nasa.gov/docs/xanadu/xspec/models/wind prof.html, where models for the
broad-band absorption of X-rays (package WINDTABS; Leutenegger et al.
2010) also can be found.
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Figure 4. Illustration of the ‘venetian blind’ effect seen in porosity models
using an anisotropic effective opacity. The dashed arrowed lines represent
two different p-rays and the observer is assumed to be located at z∞.

in OC06), despite representing two very different clump optical
depth distributions (Section 3.2). This indicates that the effects of
porosity on X-ray line profiles are not very sensitive to the specific
local distribution in τ cl. We discuss this important result further in
Section 6.

The second key feature of Figs 3 and 5 is the prominent ‘bump’
visible close to line centre in profiles calculated with anisotropic
effective opacity. Conceptually, we may understand this as a ‘vene-
tian blind’ effect (Fig. 4; see also Feldmeier et al. 2003); since the
fragmented shells are radially oriented, the blinds are closed for
radial photons, but open up for more tangential ones. This leads
to increased escape for photons emitted close to line centre, since
the line emission wavelength scales with direction cosine μ as x =
−μw (e.g. Owocki & Cohen 2001).

Another way to look at this effect is to consider the optical depth
integral for anisotropic effective opacity in the τ cl � 1 limit:

τ (p, z) =
∫ ∞

ze

χeff (z, p) dz ≈
∫ ∞

ze

|μ|
h(r)

dz, (10)

which shows that, since dr = μ dz, the optical depth in this limit
is set simply by counting up the number of porosity lengths. In
the plane-parallel limit of radially oriented, geometrically thin but
optically thick fragments, all tangential (μ = 0) photons would
escape. However, due to sphericity effects (i.e. that μ increases
as the photon propagates through the wind), also photons emitted
initially in the tangential direction will suffer some absorption (see
Fig. 4). Thus, the end result is not complete transmission, but a
characteristic bump stemming from the reduced integrated optical
depth for photons emitted around x ≈ 0. For isotropic porosity, on
the other hand, no μ factor enters in equation (10), and therefore no
bump appears in these profiles.

This quite distinct and systematic difference in the shape around
line centre between models with isotropic and anisotropic effective
opacity is a key result of the present analysis. Indeed, one can use
this difference to set empirical constraints on the clump geometry
by confronting synthetic X-ray spectra with observed ones, as will
be done in Paper II.

Generally, Fig. 3 confirms earlier results by OC06 that in order
to achieve a significant effect on the profiles, rather large porosity
lengths, h∞ > R�, are required. However, Fig. 5 reveals that for a
value of τ � = 2.5, representative of the prototypical O supergiant
ζ Pup (Cohen et al. 2010), the anisotropic porosity model displays
significantly higher flux around line centre than the other profiles,
also for h∞ = R�. Further comparisons show that, for the parameters
used in Fig. 5, the isotropic porosity model is well matched by a cor-
responding optically thin clump model with τ � reduced by ∼ 20 per

Figure 5. Line profiles for h∞ = R� and τ � = 2.5, using different effective
opacity laws, as labelled.

cent (a detailed quantification of this trade-off will be provided in
Paper II). In contrast, such a simple optical depth reduction does not
reproduce the line-centre region in anisotropic porosity models, i.e.
there is no simple trade-off, or degeneracy, between mass-loss rate
and anisotropic porosity. Thus, whereas it will be difficult to distin-
guish between optically thin clumps and moderate isotropic porosity
with somewhat higher τ � values, careful line-fitting to observations
should be able to identify, or refute, an anisotropic porosity.

Finally, for very large porosity lengths, giving τ cl � 1 in a large
portion of the wind, the profile shapes do indeed become quite
independent of atomic opacity. In the bottom panel of Fig. 3, pro-
files computed using an anisotropic effective opacity are actually
very similar to the flat-topped profiles stemming from computations
without any X-ray absorption, whereas profiles computed using an
isotropic effective opacity retain a certain degree of asymmetry.
This result differs from that found in OC06, wherein very near
symmetry was achieved for isotropic profiles with very large poros-
ity lengths, and comes about due to the h ∝ v scaling adopted here,
which implies significantly shorter porosity lengths in the lower
wind regions than the h ∝ r used in OC06. However, for more
moderate values of h∞ (top three panels in Fig. 3), all profiles are
opacity-dependent, as expected since in the formation of these lines,
porosity is a secondary effect.

5 X -RAY LI NE PROFI LES FROM
L D I SI M U L AT I O N S

The above simplified analytic models demonstrate that the effect of
optically thick clumps on wind continuum absorption can be well
characterized in terms of the wind porosity length, parametrized
here by the asymptotic value h∞ and assuming a radial variation set
by the velocity stretch form, h(r) = h∞(1 − R�/r) (Section 3.3).

But inspection of LDI simulations suggests a substantially steeper
radial variation for the separation between instability-generated
wind clumps. Even in 1D models in which the separation can be-
come of the order of a stellar radius in the outer wind (implying
h∞ ≈ R∗), the initial clump structure formed near the onset ra-
dius r ≈ 1.5R∗ tends to have a much smaller separation scale, of
the order of the Sobolev length Lsob ≈ (vth/v)R∗ ≈ 0.01R∗, where
vth is the ion thermal velocity. The sharp increase in separation
from this onset comes not just from velocity stretching from the
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overall wind acceleration, but also from collisional merging of
clumps with substantial radial velocity dispersion. For a given
asymptotic porosity length h∞, LDI models thus tend to have
smaller inner-wind porosity lengths than assumed in the simple
velocity stretch scaling. Since it is in this inner wind region that
clumps can become optically thick for X-rays, this suggests that
LDI models will show even weaker porosity effects than implied
by the analytic profiles shown in Figs 3 and 5. To demonstrate this
explicitly, we now present some first sample calculations of X-ray
profiles computed from 1D LDI simulations that are phased ran-
domly among 3D patches of a parametrized angular size (as first
developed in Dessart & Owocki 2002). The details of this patch
geometry as implemented in our radiative transfer code are given in
Sundqvist et al. (2011). Here we adapt this code to synthesize X-ray
line profiles by making the following assumptions. The X-ray emis-
sion is assumed to have a fixed spatial form independent of wind
structure, scaled in proportion to the density squared of a smooth
‘CAK’ wind and with an onset radius R0 = 1.5R∗. The bound–free
absorption is then calculated directly from the structured LDI sim-
ulation presented in Sundqvist et al. (2011) (computed following
Feldmeier et al. 1997).

Fig. 6 plots X-ray line profiles for the same wind optical depth
used for analytic models in Fig. 5, namely τ ∗ = 2.5. The curves
compare a smooth CAK model to structured LDI models with patch
sizes of 1◦ and 3◦. The overall shapes agree well with corresponding
non-porous analytic models, except for small differences due to
the fact that the CAK velocity law does not exactly follow the
phenomenological β = 1 law. However, the key point is that the LDI
profiles are very similar to the CAK profile, implying little porosity
effect; however, we note that for a 3◦ patch size, there is a small,
but notable, ‘bump’ around line centre, presumably associated with
the anisotropic (pancake) nature of the clumped structure in such
models.

These results confirm that porosity is as marginal in LDI sim-
ulations as in corresponding analytic stretch porosity models with
comparable asymptotic clump separations (i.e. h∞ ≈ R�). Moreover,
in 2D LDI models (Dessart & Owocki 2003, 2005a), clumps can
also be broken up by shearing and associated effects, leading gener-
ally to more, smaller, and less optically thick clumps, characterized
by even smaller porosity lengths. Future work will implement our
radiative transfer tools also in such genuinely multidimensional in-
stability models.
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Figure 6. Line profiles for τ � = 2.5, calculated from a smooth CAK model
and structured LDI models with patch sizes 1◦ and 3◦ (see text), as labelled.

6 A P H Y S I C A L I N T E R P R E TAT I O N O F T H E
E F F E C T I V E O PAC I T Y B R I D G I N G L AW S

As already noted, a basic difference between the two bridging laws
adopted in this paper is that one (equation 7, the ‘single-clump’
law) assumes a locally constant clump optical depth for all clumps,
whereas the other (equation 8, the ‘inverse’ law) represents a cer-
tain distribution in τ cl. Before discussing porosity effects on the
synthetic X-ray line profiles in Section 7, this section examines the
nature of this distribution.

6.1 Distribution laws for τ cl

To investigate how a distribution of clump optical depths affects
effective opacity scalings, let us assume that the ratio of the effective
to the mean opacity scales as the ratio of an effective clump optical
thickness to its mean:

χeff

〈χ〉 = τeff

〈τ 〉 =
∫ ∞

0 τf (τ ) 1−e−τ

τ
dτ∫ ∞

0 τf (τ ) dτ
, (11)

where for clarity we have dropped the indices on the clump optical
depths. Equation (11) introduces f (τ ), the normalized distribution
function of clumps, and τ eff , the distribution weighted mean of
the clump optical depth. Selecting a weighing function (1 − e−τ )/τ
ensures that the single-clump bridging law (equation 7) is recovered
from equation (11) when the distribution function is a Dirac delta
function, δ(τ − τ 0).

Let us now choose a specific distribution function of the expo-
nential form:

f (τ ) = e−τ/τ0

τ0
, (12)

which has a mean value τ 0. Using equation (12) in equation (11)
yields directly the inverse bridging law equation (8), but with τ 0

now only representing the mean clump optical depth, rather than a
unique one as in the exponential bridging law equation (7). Again,
despite the large difference between this clump distribution and
the one assuming a constant τ , the two bridging laws give similar
results, as demonstrated in Section 4.

6.2 Connecting Markovian statistics to exponentially
distributed clumps

We now show that the bridging law resulting from this exponential
distribution turns out to be a special case of a general scaling de-
rived for a stochastic mixture of two fluids that follow Markovian
statistics (e.g. Levermore, Wong & Pomraning 1988; Pomraning
1991). The Markov assumption is that the future state of the system
only depends on its present state, and not on its history. Along any
given ray through the medium, if the fluid is of component 0 at
location s, the probability of it being of component 1 at s + ds is
P0,1ds, where P0,1 is independent of how far back along the ray the
last transition (from fluid 1 to 0) occurred. Under this assumption,
the length-scales travelled within the fluid components are random
variables described by the Poisson distributions, with P0,1 identified
as the inverse of �0, the mean distance a photon travels along the ray
in fluid 0 before finding itself in component 1. A similar definition
applies for �1.

For such a two-component Markov model with opacities χ0 and
χ1, Levermore et al. (1988) derived for the effective opacity in the
pure absorption case:

χeff = 〈χ〉 + χ0χ1�c

1 + (p0χ1 + p1χ0)�c
, (13)
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where pi ≡ �i/(�0 + �1), 〈χ〉 = p0χ0 + χ1p1 is the mean opacity,
and �c ≡ �0�1/(�0 + �1) is the correlation length (Pomraning 1991).
Identifying the clumps in our model with component 1, and assum-
ing the interclump medium to be void (χ0 = 0), we find for this
‘clump+void Markov model’

χeff

〈χ〉 = 1

1 + p0χ1�c
= 1

1 + 〈χ〉p0�0
= 1

1 + 〈χ〉h . (14)

Here p0 represents the probability that a photon is in the void
medium, while �0 is the distance the photon travels in the void before
encountering a clump; the product p0�0 thus represents the photon
mean free path in the case of optically thick clumps, which is also
the porosity length h, as given by the final equality in equation (14).
Comparison with equation (8) then shows that the effective opacity
bridging law for an exponential clump optical depth distribution is
equivalent to that for this statistical clump+void Markov model.

Indeed, recalling that the Markov transport is defined along a
given ray, we may make the same identification for the anisotropic
porosity model, with the photon mean free path along the ray then
being scaled by 1/|μ|.

6.3 Exponentially truncated power-law distributions

While there are not many observational constraints on the dis-
tribution of clumps in a hot star wind (see, however, Lépine &
Moffat 1999; Dessart & Owocki 2005b), the above identification
with the Markov model at least places our porosity models on a
robust and well-known statistical ground. The inverse bridging law
should therefore be an appropriate standard choice for porosity ap-
plications such as the X-ray line formation considered here, but
perhaps also for, e.g., porosity-moderated continuum-driven wind
models of stars formally exceeding the Eddington luminosity, as in-
vestigated by Owocki et al. (2004). Indeed, although not explicitly
studied in that paper, we note that the Markov model represents a
special case of the exponentially truncated power-law distribution
of clumps considered in Owocki et al. (2004), namely the one with
power index αp = 2. Thus, reasonable extensions of the two canon-
ical distributions studied here could readily be done by using some
other power index variant given in Owocki et al. (2004).

7 D I S C U S S I O N A N D C O N C L U S I O N S

7.1 Isotropy or anisotropy

Let us next compare our analysis to that by Oskinova et al. (2006).
These authors also pointed out the differences between isotropic and
anisotropic effective opacity and carried out a comparison, however
only for the specific case of τ � = 10 and a fragmentation frequency
(see Section 3.3) n0 = 1.4 × 10−4 s−1. Taking the parameters for
the O supergiant ζ Pup adopted in Oskinova et al., this corresponds
to h∞ = v∞/n0 = 4.24 R�, which in turn roughly corresponds to
the bottom panel in our Fig. 3. Indeed, the profiles displayed in
that panel agree well with those in fig. 16 of Oskinova et al.; both
figures illustrate that for such very large porosity lengths, profiles
computed using anisotropic effective opacity are nearly symmetric
(Section 4).

This comparison suggests an overall good agreement among the
results found by the different groups. However, as shown in Sec-
tion 4, anisotropic porosity line profiles, with their characteristic
‘bump’ at line centre, are qualitatively different from isotropic
porosity or optically thin clumping profiles. Thus, the good sta-
tistical fits presented for ζ Pup by Cohen et al. (2010), without

invoking porosity, seem somewhat contradictory to the good visual
fits presented by Oskinova et al. (2006), using models with mod-
erate anisotropic porosity h∞ ≈ R�. Paper II will further examine
and quantify these differences between anisotropic porosity on the
one hand, and isotropic porosity or optically thin clumping on the
other.

7.2 Is porosity important for X-ray line mass-loss diagnostics?

The LDI simulations presented in Section 5 indicate small porosity
lengths and negligible porosity effects on X-ray line profiles. Such
small porosity lengths also have some indirect empirical support.
Namely, the mass-loss rate derived for ζ Pup by Cohen et al. (2010),
without invoking porosity, is only marginally lower than the upper
limit mass-loss rate derived by Puls et al. (2006), by assuming
an unclumped outermost radio-emitting wind, while allowing for
clumping in the intermediate and lower wind. Because of the trade-
off between porosity and mass-loss rate then, if porosity lengths
large enough to significantly affect the X-ray line profiles were to be
adopted, h∞ > R�, the inferred X-ray mass-loss rate would be higher
than this upper limit. That is, such multiwavelength considerations
indicate that a significant porosity effect on X-ray-based mass-loss
rates is incompatible with diagnostic results from other wavebands.

Overall, we thus conclude that porosity effects on X-ray line pro-
files are likely to be, at most, a marginal effect in typical O stars.
This is supported also by the low optical depths found for ζ Pup
as well as for the even denser wind of HD 93129A (Cohen et al.
2010, 2011a). Since most O stars will have characteristic τ � values
significantly lower than these, porosity effects should be negligi-
ble. The upshot is that X-ray line analysis may indeed provide the
best available ‘clumping insensitive’ diagnostic of O star mass-loss
rates.
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Leutenegger M. A., Cohen D. H., Zsargó J., Martell E. M., MacArthur J. P.,
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A P P E N D I X A : G E N E R AT I O N M E T H O D F O R
C L U M P E D M E D I U M IL L U S T R AT I O N S

The clumped medium illustrations in Fig. 2 were generated by
following the radial expansion of mass-conserving clumps. As with
the analogous illustration in fig. 3 of OC06, we assume the clump
scale l increases in proportion to the local radius:

l(r) = l∗
r

R∗
. (A1)

However, instead of the OC06 assumption of a purely isotropic
(‘Hubble law’) velocity expansion v ∼ r, we now use a standard
β = 1 wind velocity law. For clumps of projected area Acl = l2 ∝
r2 and local volume density ncl ∝ 1/(v r2), this gives the associated
radial variation of the porosity the desired ‘velocity-stretch’ form:

h(r) = 1

nclAcl
= h∞

v(r)

v∞
= h∞(1 − R∗/r) . (A2)

For specified clump parameters l∗ and h∞, the clump number density
is thus given by

ncl(r) = 1

hAcl
= v∞R2

∗
h∞l2∗

1

r2v(r)
. (A3)

Note that, unlike the OC06 isotropic expansion model, the clump
volume filling factor in this velocity-stretch scaling is not constant,

but varies spatially as f V ∝ ncll3 ∝ r/v(r), which actually is quite
consistent with derived observational constraints (e.g. Puls et al.
2006).

The cumulative number of clumps up to a radius r above the
clump onset radius Rcl is

N (r) = 4π

∫ r

Rcl

nclr
′2 dr ′

= 4πR3
∗

h∞l2∗

[
r − Rcl

R∗
+ ln

(
r − R∗

Rcl − R∗

)]
. (A4)

For a specified outer radius Rmax, the total number of clumps is
N tot = N(Rmax). Since Fig. 2 uses fixed parameters l∗/R∗ = 0.1,
Rcl/R∗ = 1.05 and Rmax/R∗ = 5, this number scales with 1/h∞, and
ranges from N tot = 1308 for the largest porosity length h∞/R∗ = 8
in the rightmost column, to N tot = 41 881 for the least porous case
h∞/R∗ = 0.25 in column 2.

A random set of N tot clumps with the required statistical distri-
bution in radius can now be drawn simply by generating a set of
pseudo-random numbers Ri over the range [0, 1], and inverting the
normalized cumulative distribution function F (r) ≡ N (r)/Ntot =
Ri to find the radius r:

r(Ri) = R∗ (1 + ProductLog[exp(Ccl + CmaxRi)]) , (A5)

with the constants given by

Ccl = Rcl/R∗ − 1 + ln(Rcl/R∗ − 1), (A6)

Cmax = (Rmax − Rcl)/R∗ + ln

(
Rmax − R∗
Rcl − R∗

)
. (A7)

Likewise, we use the assumed statistical spherical symmetry and
generate the clump angle coordinates in azimuth φ and colatitudinal
cosine μ through additional pseudo-random numbers:

φi = 2πRi+Ntot ; μi = 2Ri+2Ntot − 1 . (A8)

In this system, it is most convenient to assume that the clumps
are viewed from above the μ = 1 pole, thus with μ > 0 (μ < 0)
representing clumps in the foreground (background) hemisphere.

With the random set of clump positions in hand, the clump sizes
are set by equation (A1), with all cases in Fig. 2 using l∗/R∗ = 0.1.
To give the associated projected area l2 = Acl = πd2

cl/4, the clump
diameters are set to dcl = 2l/

√
π.

For the spherical clumps in the upper row of Fig. 2, the trans-
parency of each individual projected clump disc area is set by
exp (−τ cl), where the surface-averaged clump optical depth is
τ cl = τ ∗h∞R∗/r2. For the radially compressed clumps in the lower
row, the associated clump optical depths are increased by 1/|μ|;
their projected areas are reduced through foreshortening their radial
extent by a factor of |μ|, while keeping their radially perpendicular
extent equal to the local clump diameter dcl.

Finally, clumps in the back hemisphere (μ< 0) that are behind the
star (with r

√
1 − μ2 < R∗) are simply not drawn. This effectively

means the clumps directly in front of the star appear as if illuminated
by a stellar surface brightness equal to the back illumination of the
clumps outside the stellar limb.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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